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1 Cyclic Extensions and Cyclotomic Polynomials

1.1 Cyclic extensions

Definition 1.1. A cyclic extension is a Galois extension with a cyclic Galois group.

Last time, we determined that a cyclic extension L/K is K[ n
√
a] if the characteristic

does not divide n and K[α] otherwise, where αp − α − b = 0; also note that the former
element is the solution to ap − a = 0. The nice thing about this is that if we know one
root, α, thenwe know other roots (αζi and α+ i, respectively).

Which polynomials can be “solved by radicals”? What we means is that roots can be
written using addition, subtraction, multiplication, and k-th roots. For example, the roots

to a quadratic equation ax2 + bx+ c are x = −b±
√
b2−4ac
2a .1

Theorem 1.1. The Galois group is solvable iff roots can be given using radicals and Artin-
Schrier equations (char > 0).

Proof. Suppose an equation is solvable by radicals. Assume that the base field K contains
all roots of 1 we need. Look at K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ L, where L is the splitting field of
the polynomial. K1 = K0( n

√
α1). Look at the Galois groups:

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ 1.

G2 is normal in G1, and G1/G2 is cyclic. G has a chain of subgroups, each normal in the
next, and all quotients are cyclic. So G is solvable.

Suppose G is solvable (and K contains all roots of 1). We have

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ 1,

1Mathematicians used to duel for money and prestige, presenting each other with difficult problems to
solve. Cardano came up with a general solution for finding roots of degree 4 polynomials, which became a
valuable asset for him in these duels.
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where Gi is normal in Gi−1, and Gi−1/Gi is cyclic of prime order. Look at the fields

K ⊆ K1︸︷︷︸
=LG1

⊆ K2︸︷︷︸
=LG2

⊆ · · · ⊆ L.

Ki+1/Ki is a cyclic Galois extension, so Ki+1 = Ki( n
√
αn) or Artin-Schrier.

Example 1.1. Consider x5 − 4x + 2. The Galois group is S5, which has order 120. The
only normal subgroups are 1, A5, and S5. This polynomial is not solvable by radicals.

Example 1.2. x5 − 2 is irreducible and of degree 5, but it can be solve by radicals.
The Galois group is solvable. The field extensions look like Q ⊆ Q(ζ) ⊆ Q(ζ, 5

√
2). The

corresponding groups of the wuotients of the Galois groups are Z/4Z and Z/5Z, which are
cyclic.

Example 1.3. All polynomials of degree ≤ 4 can be solved by radicals (in characteristic
0), the Galois groups is a subgroup of S4, so it is solvable. We have

S4 ⊇ A4 ⊇ (Z/2Z)× (Z/2Z) ⊇ 1.

1.2 Cyclotomic polynomials

Over Q, the roots of unity are the roots of xn−1 = 0. How does this factor into irreducibles?
Look at x12 − 1. This is divisible by x6 − 1, x4 − 1, x3 − 1, etc., but these have factors in
common.

Definition 1.2. The n-th cyclotomic polynomial Φn(x) is the polynomial with roots the
primitive n-th roots of unity (order exactly n).

Example 1.4. Let’s compute some examples:

n Φn(x)

1 x− 1
2 x+ 1

3 x3 + x+ 1 = x3−1
x−1

4 x2 + 1 = x4−1
x2−1

5 x4 + x3 + x2 + x+ 1 = x5−1
x−1

6 x2 − x+ 1 = (x6−1)(x−1)
(x3−1)(x2−1)

Example 1.5. We have to make sure we’re not dividing by factors multiple times, so we
must put an x− 1 in the numerator:

Φ12(x) =
(x12 − 1)(x2 − 1)

(x6 − 1)(x4 − 1)
= x4 − x2 + 1

x12 − 1 = Φ12(x)Φ6(x)Φ4(x)Φ3(x)Φ2(x)Φ1(x).
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Example 1.6. Again, we make sure we don’t divide by factors multiple times.

Φ15(x) =
(x15 − 1)(x− 1)

(x5 − 1)(x3 − 1)
= x8 − x7 + x5 − x4 + x2 − x+ 1.

If you want to really understand cyclotomic polynomials, try out the following exercise:
Find the smallest n such that Φn(x) has a coefficient not 0 or ±1.2

Theorem 1.2. Φn(x) is irreducible over Q. It’s Galois group is (Z/nZ)∗.

Proof. If b is prime, we have proved this using Eisenstein’s criterion. A similar proof works
for prime powers. For general n, we use a different argument. The first key idea is to
reduce (mod p) for primes p. The second key idea is to use the Frobenius map, F (t) = tp,
where the field has characteristic p; F is an automorphism.

Suppose f is an irreducible factor of Φn(x) (over Q). Form Z[ζ] = Z[x]/f(x). This is
an integral domain, and the quotient field Q(ζ) is generated by a primitive n-th root ζ of 1.
Use Z, not Q to reduce mod p. Z[ζ] contains n distinct roots of xn − 1: 1, ζ, ζ2, . . . , ζn−1.
Now choose an irreducible factor g(x) of f(x) in Fp(x) (factor f (mod p)). In general,
deg g < deg f . The key point is that since xn − 1 has n distinct roots, nxn−1 = d

dx(xn − 1)
and xn − 1 are coprime.

Since ζ is a root of g (which is irreducible), ζp is also a root of g as t 7→ tp is an
automorphism of Fp(ζ). So in Z[ζ], ζp is also a root of f . Then the map from roots of
unity in Z[s] to roots of unity in Fp[ζ] is bijective. So if p does not divide n, then the roots
of f are closed under the map ζ 7→ ζp.

Now look at the Galois group of Z[ζ]. Automorphisms take ζ 7→ ζk for k, n coprime,
so the Galois group is a subgroup of (Z/nZ)∗. The Galois group contains ζ 7→ ζp for p, n
coprime, which generate (Z/nZ)∗. So the Galois group equals (Z/nZ)∗, so f = Φn(x).

Definition 1.3. A cyclotomic3 field is a field generated by roots of unity.

1.3 Applications of cyclotomic polynomials

1.3.1 Primes modulo n

Theorem 1.3. Suppose n ∈ Z. There are infinitely many primes p > 0 with p ≡ 1
(mod n).4

Proof. The idea is to look at the primes P dividing Φn(a) for some a. Suppose p, n are
coprime. Then all roots of Φn(x) are distinct mod p. So Φn(x) is coprime to Φm(x) in

2You may have to check n > 100, but do not just do this brute force. You should do small cases and
notice some kind of pattern.

3“Cyclo” means “circle,” and “tomic” means “cut.”
4Dirichlet proved this for p ≡ a (mod n) for any a coprime to n, but the proof is not as nice. There

seems to be no known way to extend the nice proof to this more general case, which frustrates some people.
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Fp(x) for m dividing n. So if p | Φn(a), p does not divide Φm(a) for m | n. This says that
if Φn(a) ≡ 0 (mod p), then Φm(a) 6≡ 0 (mod p) when m | n. So if an ≡ 1 (mod p), then
am 6= 1 (mod p) for m | n. So a has order exactly n (mod p), so n divides |(Z/pZ)∗| = p−1,
so p = 1 (mod n).

So if p | Φn(a), then either p | n or p ≡ 1 (mod n). Suppose p1, . . . , pk are 1 (mod n).
Choose p dividing Φn(np1 · · · pk). Φn(x) = 1 + x + · · · , so this is 1 (mod n)p1 · · · pk, so p
does not divide p1 · · · pk. Then p does not divide n. So we have found p, a new prime ≡ 1
(mod n).

Example 1.7. Let n = 8. Then Φ8(a) = a4 + 1. if a = 1, we get 2, which divides 8. If
a = 2, we get 9, which is 1 (mod 8). If a = 3, we get 82 = 41 × 2; 41 ≡ 1 (mod 8), and
2|8.

1.3.2 Galois extensions over Q

Recall the hard problem: given finite G, is G a Galois group of K/Q for some K?

Theorem 1.4. If G is abelian, there exists some K/Q, such that G is the Galois group of
K/Q.

Proof. Write G as a product of cyclic groups:

G = (Z/n1Z)× (Z/n2Z)× · · · .

Choose distinct primes p1 ≡ 1 (mod n)1, p2 ≡ 1 (mod n)2, · · · . (Z/n1Z) is a quotient of
(Z/p+ 1Z)∗. So G is a quotient of Z/p1Z× Z/p2Z× · · · )∗ = (Z/p1p2 · · ·Z)∗, which is the
Galois group of xp1,...pn − 1. So any quotient G/H is the Galois group of some extension
K/Q.

Here is a type of converse, which we will not prove.

Theorem 1.5 (Kronecker-Weber-Hilbert). If K is a Galois extension of Q with abelian
Galois group, then K ⊆ Q(ζ) for some root of unity ζ.

1.3.3 Finite division algebras

Can we find finite analogues of the quaternions H? This is a division algebra that is a
“non-commutative field.”

Theorem 1.6 (Wedderburn). Any finite division algebra is a field (commutative).

Proof. Recall that any group G is the union of its conjugacy classes, which have sizes
|G| / |H|, where H is a subgroup centralizing a representative element of a conjugacy class.

Let L be a finite division algebra, and let K be its center, a field Fq of order q for some
prime power q. Look at the group G = L∗, which has order q − 1. Suppose a ∈ G. The
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centralizer of a in L is a subfield of order qk for some k, so the centralizer of a in G is a
subfield of order qk − 1 (0 /∈ G). So

qn−1 = q − 1 +
∑
i

qn − 1

qki−1
,

where the sum is over conjugacy classes of orders > 1. Note that k1 < n.
Now note that qn−1 is divisible by Φn(q). Also note that so is (qn−1)/(qki−1), as k1 < n.

So q− 1 is divisible by Φn(x) =
∏

i∈(Z/nZ)∗(q− ζi). But observe that |q − ζi| > q− 1 unless

ζi = 1. So n = 1. So L = K, which makes L commutative.

Definition 1.4. The Brauer group is the group of isomorphism classes of a finite dimen-
sional division algebras over a field K with center K.

Example 1.8. The Brauer group of R has 2 elements: R, and H.

If D1, D2 are division algebras, D1 ⊗K D2
∼= Mn(D3) for some n, D3, where D3 is the

product of D1, D2 in the Brauer group.

Remark 1.1. Wedderburn’s theorem shows that the Brauer group of a finite field is trivial.

1.4 Norm and trace in finite extensions

Let L/K be a finite extension, and choose a ∈ L. Multiplication by a is a linear transfor-
mation from L→ L, where L is viewed as a vector space over K.

Definition 1.5. The trace of a is defined as the trace of a as a linear transformation. The
norm of a is the determinant of a as a linear transformation.

Definition 1.6. The norm of a is the determinant of a as a linear transformation.5

Example 1.9. Take C/R and a = x + iy ∈ C. A basis for C/R is {1, i}. a · 1 = x + iy,
and a · i = −y + ix. So a is given by the matrix[

x y
−y x

]
.

So the trace of a is 2x, and the norm is x2 + y2.

5Ignore Lang’s definition. Professor Borcherds thinks it is “silly.”
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