Math 250A Lecture 23 Notes

Daniel Raban

November 16, 2017

1 Cyclic Extensions and Cyclotomic Polynomials

1.1 Cyclic extensions

Definition 1.1. A cyclic extension is a Galois extension with a cyclic Galois group.

Last time, we determined that a cyclic extension L/K is $K[\sqrt[n]{a}]$ if the characteristic does not divide n and $K[\alpha]$ otherwise, where $\alpha^p - \alpha - b = 0$; also note that the former element is the solution to $a^p - a = 0$. The nice thing about this is that if we know one root, α , thenwe know other roots ($\alpha \zeta^i$ and $\alpha + i$, respectively).

Which polynomials can be "solved by radicals"? What we means is that roots can be written using addition, subtraction, multiplication, and k-th roots. For example, the roots to a quadratic equation $ax^2 + bx + c$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.¹

Theorem 1.1. The Galois group is solvable iff roots can be given using radicals and Artin-Schrier equations (char > 0).

Proof. Suppose an equation is solvable by radicals. Assume that the base field K contains all roots of 1 we need. Look at $K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq L$, where L is the splitting field of the polynomial. $K_1 = K_0(\sqrt[n]{\alpha_1})$. Look at the Galois groups:

$$G \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq 1.$$

 G_2 is normal in G_1 , and G_1/G_2 is cyclic. G has a chain of subgroups, each normal in the next, and all quotients are cyclic. So G is solvable.

Suppose G is solvable (and K contains all roots of 1). We have

$$G \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq 1,$$

¹Mathematicians used to duel for money and prestige, presenting each other with difficult problems to solve. Cardano came up with a general solution for finding roots of degree 4 polynomials, which became a valuable asset for him in these duels.

where G_i is normal in G_{i-1} , and G_{i-1}/G_i is cyclic of prime order. Look at the fields

$$K \subseteq \underbrace{K_1}_{=L^{G_1}} \subseteq \underbrace{K_2}_{=L^{G_2}} \subseteq \cdots \subseteq L.$$

 K_{i+1}/K_i is a cyclic Galois extension, so $K_{i+1} = K_i(\sqrt[n]{\alpha_n})$ or Artin-Schrier.

Example 1.1. Consider $x^5 - 4x + 2$. The Galois group is S_5 , which has order 120. The only normal subgroups are 1, A_5 , and S_5 . This polynomial is not solvable by radicals.

Example 1.2. $x^5 - 2$ is irreducible and of degree 5, but it can be solve by radicals. The Galois group is solvable. The field extensions look like $\mathbb{Q} \subseteq \mathbb{Q}(\zeta) \subseteq \mathbb{Q}(\zeta, \sqrt[5]{2})$. The corresponding groups of the wuotients of the Galois groups are $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/5\mathbb{Z}$, which are cyclic.

Example 1.3. All polynomials of degree ≤ 4 can be solved by radicals (in characteristic 0), the Galois groups is a subgroup of S_4 , so it is solvable. We have

$$S_4 \supseteq A_4 \supseteq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \supseteq 1.$$

1.2 Cyclotomic polynomials

Over \mathbb{Q} , the roots of unity are the roots of $x^n - 1 = 0$. How does this factor into irreducibles? Look at $x^{12} - 1$. This is divisible by $x^6 - 1$, $x^4 - 1$, $x^3 - 1$, etc., but these have factors in common.

Definition 1.2. The *n*-th cyclotomic polynomial $\Phi_n(x)$ is the polynomial with roots the primitive *n*-th roots of unity (order exactly *n*).

Example 1.4. Let's compute some examples:

Example 1.5. We have to make sure we're not dividing by factors multiple times, so we must put an x - 1 in the numerator:

$$\Phi_{12}(x) = \frac{(x^{12} - 1)(x^2 - 1)}{(x^6 - 1)(x^4 - 1)} = x^4 - x^2 + 1$$
$$x^{12} - 1 = \Phi_{12}(x)\Phi_6(x)\Phi_4(x)\Phi_3(x)\Phi_2(x)\Phi_1(x).$$

Example 1.6. Again, we make sure we don't divide by factors multiple times.

$$\Phi_{15}(x) = \frac{(x^{15} - 1)(x - 1)}{(x^5 - 1)(x^3 - 1)} = x^8 - x^7 + x^5 - x^4 + x^2 - x + 1.$$

If you want to really understand cyclotomic polynomials, try out the following exercise: Find the smallest n such that $\Phi_n(x)$ has a coefficient not 0 or $\pm 1.^2$

Theorem 1.2. $\Phi_n(x)$ is irreducible over \mathbb{Q} . It's Galois group is $(\mathbb{Z}/n\mathbb{Z})^*$.

Proof. If b is prime, we have proved this using Eisenstein's criterion. A similar proof works for prime powers. For general n, we use a different argument. The first key idea is to reduce (mod p) for primes p. The second key idea is to use the Frobenius map, $F(t) = t^p$, where the field has characteristic p; F is an automorphism.

Suppose f is an irreducible factor of $\Phi_n(x)$ (over \mathbb{Q}). Form $\mathbb{Z}[\zeta] = \mathbb{Z}[x]/f(x)$. This is an integral domain, and the quotient field $\mathbb{Q}(\zeta)$ is generated by a primitive *n*-th root ζ of 1. Use \mathbb{Z} , not \mathbb{Q} to reduce mod p. $\mathbb{Z}[\zeta]$ contains n distinct roots of $x^n - 1$: $1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$. Now choose an irreducible factor g(x) of f(x) in $F_p(x)$ (factor $f \pmod{p}$). In general, deg $g < \deg f$. The key point is that since $x^n - 1$ has n distinct roots, $nx^{n-1} = \frac{d}{dx}(x^n - 1)$ and $x^n - 1$ are coprime.

Since ζ is a root of g (which is irreducible), ζ^p is also a root of g as $t \mapsto t^p$ is an automorphism of $F_p(\zeta)$. So in $\mathbb{Z}[\zeta]$, ζ^p is also a root of f. Then the map from roots of unity in $\mathbb{Z}[s]$ to roots of unity in $F_p[\zeta]$ is bijective. So if p does not divide n, then the roots of f are closed under the map $\zeta \mapsto \zeta^p$.

Now look at the Galois group of $\mathbb{Z}[\zeta]$. Automorphisms take $\zeta \mapsto \zeta^k$ for k, n coprime, so the Galois group is a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$. The Galois group contains $\zeta \mapsto \zeta^p$ for p, ncoprime, which generate $(\mathbb{Z}/n\mathbb{Z})^*$. So the Galois group equals $(\mathbb{Z}/n\mathbb{Z})^*$, so $f = \Phi_n(x)$. \Box

Definition 1.3. A cyclotomic³ field is a field generated by roots of unity.

1.3 Applications of cyclotomic polynomials

1.3.1 Primes modulo *n*

Theorem 1.3. Suppose $n \in \mathbb{Z}$. There are infinitely many primes p > 0 with $p \equiv 1 \pmod{n}$.⁴

Proof. The idea is to look at the primes P dividing $\Phi_n(a)$ for some a. Suppose p, n are coprime. Then all roots of $\Phi_n(x)$ are distinct mod p. So $\Phi_n(x)$ is coprime to $\Phi_m(x)$ in

²You may have to check n > 100, but do not just do this brute force. You should do small cases and notice some kind of pattern.

³ "Cyclo" means "circle," and "tomic" means "cut."

⁴Dirichlet proved this for $p \equiv a \pmod{n}$ for any *a* coprime to *n*, but the proof is not as nice. There seems to be no known way to extend the nice proof to this more general case, which frustrates some people.

 $F_p(x)$ for m dividing n. So if $p \mid \Phi_n(a)$, p does not divide $\Phi_m(a)$ for $m \mid n$. This says that if $\Phi_n(a) \equiv 0 \pmod{p}$, then $\Phi_m(a) \not\equiv 0 \pmod{p}$ when $m \mid n$. So if $a^n \equiv 1 \pmod{p}$, then $a^m \neq 1 \pmod{p}$ for $m \mid n$. So a has order exactly $n \pmod{p}$, so n divides $|(\mathbb{Z}/p\mathbb{Z})^*| = p-1$, so $p = 1 \pmod{n}$.

So if $p \mid \Phi_n(a)$, then either $p \mid n$ or $p \equiv 1 \pmod{n}$. Suppose p_1, \ldots, p_k are 1 (mod n). Choose p dividing $\Phi_n(np_1 \cdots p_k)$. $\Phi_n(x) = 1 + x + \cdots$, so this is 1 (mod $n)p_1 \cdots p_k$, so p does not divide $p_1 \cdots p_k$. Then p does not divide n. So we have found p, a new prime $\equiv 1 \pmod{n}$.

Example 1.7. Let n = 8. Then $\Phi_8(a) = a^4 + 1$. if a = 1, we get 2, which divides 8. If a = 2, we get 9, which is 1 (mod 8). If a = 3, we get $82 = 41 \times 2$; $41 \equiv 1 \pmod{8}$, and 2|8.

1.3.2 Galois extensions over \mathbb{Q}

Recall the hard problem: given finite G, is G a Galois group of K/\mathbb{Q} for some K?

Theorem 1.4. If G is abelian, there exists some K/\mathbb{Q} , such that G is the Galois group of K/\mathbb{Q} .

Proof. Write G as a product of cyclic groups:

$$G = (\mathbb{Z}/n_1\mathbb{Z}) \times (\mathbb{Z}/n_2\mathbb{Z}) \times \cdots$$

Choose distinct primes $p_1 \equiv 1 \pmod{n_1}$, $p_2 \equiv 1 \pmod{n_2}$, \cdots . $(\mathbb{Z}/n_1\mathbb{Z})$ is a quotient of $(\mathbb{Z}/p+1\mathbb{Z})^*$. So G is a quotient of $\mathbb{Z}/p_1\mathbb{Z} \times \mathbb{Z}/p_2\mathbb{Z} \times \cdots)^* = (\mathbb{Z}/p_1p_2\cdots\mathbb{Z})^*$, which is the Galois group of $x^{p_1,\dots,p_n} - 1$. So any quotient G/H is the Galois group of some extension K/\mathbb{Q} .

Here is a type of converse, which we will not prove.

Theorem 1.5 (Kronecker-Weber-Hilbert). If K is a Galois extension of \mathbb{Q} with abelian Galois group, then $K \subseteq \mathbb{Q}(\zeta)$ for some root of unity ζ .

1.3.3 Finite division algebras

Can we find finite analogues of the quaternions \mathbb{H} ? This is a division algebra that is a "non-commutative field."

Theorem 1.6 (Wedderburn). Any finite division algebra is a field (commutative).

Proof. Recall that any group G is the union of its conjugacy classes, which have sizes |G| / |H|, where H is a subgroup centralizing a representative element of a conjugacy class.

Let L be a finite division algebra, and let K be its center, a field F_q of order q for some prime power q. Look at the group $G = L^*$, which has order q - 1. Suppose $a \in G$. The centralizer of a in L is a subfield of order q^k for some k, so the centralizer of a in G is a subfield of order $q^k - 1$ ($0 \notin G$). So

$$q^{n-1} = q - 1 + \sum_{i} \frac{q^n - 1}{q^{k_i - 1}},$$

where the sum is over conjugacy classes of orders > 1. Note that $k_1 < n$.

Now note that q^{n-1} is divisible by $\Phi_n(q)$. Also note that so is $(q^n-1)/(q^{k_i-1})$, as $k_1 < n$. So q-1 is divisible by $\Phi_n(x) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^*} (q-\zeta^i)$. But observe that $|q-\zeta_i| > q-1$ unless $\zeta^i = 1$. So n = 1. So L = K, which makes L commutative.

Definition 1.4. The *Brauer group* is the group of isomorphism classes of a finite dimensional division algebras over a field K with center K.

Example 1.8. The Brauer group of \mathbb{R} has 2 elements: \mathbb{R} , and \mathbb{H} .

If D_1, D_2 are division algebras, $D_1 \otimes_K D_2 \cong M_n(D_3)$ for some n, D_3 , where D_3 is the product of D_1, D_2 in the Brauer group.

Remark 1.1. Wedderburn's theorem shows that the Brauer group of a finite field is trivial.

1.4 Norm and trace in finite extensions

Let L/K be a finite extension, and choose $a \in L$. Multiplication by a is a linear transformation from $L \to L$, where L is viewed as a vector space over K.

Definition 1.5. The *trace* of a is defined as the trace of a as a linear transformation. The norm of a is the determinant of a as a linear transformation.

Definition 1.6. The norm of a is the determinant of a as a linear transformation.⁵

Example 1.9. Take \mathbb{C}/\mathbb{R} and $a = x + iy \in \mathbb{C}$. A basis for \mathbb{C}/\mathbb{R} is $\{1, i\}$. $a \cdot 1 = x + iy$, and $a \cdot i = -y + ix$. So a is given by the matrix

$$\begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

So the trace of a is 2x, and the norm is $x^2 + y^2$.

⁵Ignore Lang's definition. Professor Borcherds thinks it is "silly."